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SUMMARY

It is demonstrated by a motion and aerodynamic heating analysis of
various types of lifting and nonlifting satellite entries that the
heating-rate histories may be represented approximabtely by one curve if
they are properly made dimensionless. Attention is then focused on a
study of the simulation of critical thermal effects on satellite vehicles
with particular attention to the use of small-scale models. The general-
ized heating-rate history shows that simulation of heating effects in
lifting and nonlifting satellites can be accomplished with properly
designed small-scale ballistic models. It is also shown that an atmosphere-
entry simulator designed primarily for the testing of ballistic vehicles
may be used to advantage for the simulation of effects in lifting and
nonlifting satellites. Similarity relations are derived and an application
of these relations is made to the simulation of heating effects on a
lifting satellite vehicle.

A study is also presented of the possibility of firing a model
upstream in an atmosphere-entry simylator with a high stream velocity to
obtain the high stagnation enthalpies of entry from highly elliptic,
parabolic, and hyperbolic trajectories.

INTRODUCTION

The aerodynamic heating experienced by recoverable space and satellite
vehicles during an atmosphere entry poses an important problem to the
designer. Since full-scale tests of these vehicles are costly and time-
consuming, it is proper to determine whether simulation of the heating
effects 1s possible with properly designed small-scale models flown along
appropriate trajectories. There is also the attractive possibility of
using relatively simple equipment on the ground, such as an atmosphere-
entry simulator originally designed for ballistic missiles (see ref. 1),
for the simulation of these effects in recoverable satellite and space
vehicles.

Simulation is usually accomplished by a proper scaling of the
heating-rate history and a consistent scaling of the particular critical



quantity‘(as for example, thermal stress) to be simulated. With this
fact in mind, this paper undertakes first to establish the motion and
heating of vehicles of this type, and then to establish relations of
similarity for the various effects of this heating.

ANATYSIS

Motion

In the consideration of the heating experienced by a vehicle entering
the earth's atmosphere, it is first necessary to determine the operating
conditions that it will experience. These conditions are dictated by the
vehicle's motion through the atmosphere and it is therefore necessary
first to make an analysis of this motion. The reader is directed to the
numerous analyses of this type, such as references 2, 3, 4, and 5. For
the purposes of this paper an analysis such as found in reference 2 will
be used.

For the purposes of future identificaticn, the three classes of
vehicles considered in this report will be identified as follows:

1. Lifting satellites: Vehicles capable of using some 1ift
during entry from a satellite orbit. ZEntry is initiated
at satellite speed and at a very small angle to the
horizontal.

2. Nonlifting satellites: Nonlifting vehicles which initiate
entry at satellite speed and at a very small angle to the
horizontal.

3. Ballistic vehicles: Nonlifting configurations which
initiate entry at somewhat lower than satellite speed and
at a large or moderate angle to the horizontal (i.e.,
entry at angles of approximately 20° or more).

In general, a vehicle during
entry is subjected to aerodynamic,
centrifugal, and gravitational forces
as shown in sketch (a). The parametric
equations of motion along and normal
to the flight path can be written as:
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where r. 1s the local radius of curvature of the flight path and 4
is the angle of the flight path to the local horizontal, measured positive
downward. All symbols are defined in appendix A.

We now focus our attention on the two types of entry trajectories
which will be of interest to us, namely, (1) the satellite entry (lifting
and nonlifting) and (2) the ballistic entry. The satellite entry is
characterized by entry at satellite speed at a small inclination such
that |6 | << 1 throughout the trajectory except in the terminal phase,
and the ballistic entry is characterized by entry at large angles with a
resultant small flight-path curvature or an essentially straight-line
trajectory (see ref. 3).

Eggers (ref. 2) has shown that for satellite entry (|6] << 1,

mgd | << D) into an isothermal atmosphere (i.e., p = poe_By) equations (1)
and (2) can be combined, for the case of constant Cp and L/D, into the
following single differential equation of motion:

2
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It can be seen that f and z are transformed altitude and velocity
coordinates and that K is an L/D parameter.

In the large-angle ballistic trajectory, forces normal to the flight
path play a very small part in the determination of the motion of the
entering vehicle. The flight path becomes essentially a straight line.
The trajectory can then be represented by the single equation of motion
along the flight path, again neglecting the component of weight along the
flight path in comparison to the drag. If it is noted that
dy/dt = -V sin 6, and if the isothermal atmosphere is assumed,



equation (1) yields:

Cpooh . 2 -By . av
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where O 1s the entrance angle, constant throughout entry. Use of the
coordinate transforms defined by equations (U4) and (5) yields the following
differential equation of motion for a large-angle ballistic entry:

= - /Brg sin 6 (8)
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Heating

Before we consider the solution of the differential equations of
motion, let us first consider some general aspects of the aerodynamic
heating of vehicles of this type.

The stagnation-point heating rate under the conditions of laminar
incompressible flow with a Prandtl number of unity is given by (see

refs. 3 and 0)
0, = . [2 v (9)

where C 1s constant and o is the stagnation-point radius of curvature.
Rewriting equation (9) in the f and z coordinates yields (for an
isothermal atmosphere)

4, = arel/2g(8/2)2 (10)
where
B 1/2
cr o= vl of = (2
sat 4 g <CDAO' (10a)
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Differentiating equation (10) to determine the maximum stagnation-point
heating rate and the f and z coordinates of the trajectory point where
this heating rate occurs yields:

<%>*+ 3% = 0 (12)

where the asterisk refers to the trajectory point corresponding to the
maximum stagnation-point heating rate.

For the purpose of simulation of thermal effects on the entering
vehicle, it is necessary to consider the time history of the heating
rates and the integrated heat input to the structure. The trajectory can
be determined chronologicall®y with respect to the altitude and velocity
coordinates for both satellite and ballistic entries from equation (1),
written in the form

a
at

C -

or written in the f-z coordinates as:
dz
NBg dt = - T2 (13)

If time is measured from the instant of maximum stagnation-point heating
rate (i.e., t=0 at z=z%), we obtain:

Z
- 1l dz
e .

Using equations (10), (11), and (14) we may now present the heating-
rate history parametrically in terms of the velocity coordinate =z in
the following dimensionless form:

— =q == e (15)

1/2
Q5 _ £ 3/2(z-z%)
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dz (16)
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qs=q£* where time is madg dimensionless in
such a way that t = -1 when Qg

‘\\\\ assumes the value l/e on the high

velocity side of the heating pulse.
The choice of this value is somewhat
Qg | % arbitrary. For clarity, the scheme
| Gs=eds for making the heating-rate history
3 1=0 dimensionless is shown in sketch (b).
=-tg The trajectory function f = f(z) is
determined from the differential

0] " equatiod of motion, and the starred
conditions are determined from the
motion equation together with

Sketch (b) equation (11).

-1 QO

Note that the advantage of defining the heating-rate history in this
way 1is that two points of the history are the same for all trajectories

(i.e., 3, =1/e at T =-1 and Gz =1 at t=0).

This analysis has been for laminar flow in the stagnation region of
the nose. An analysis for the aerodynamic heating experienced by other
points on the body, under the condition of turbulent flow, can be made
in a similar manner starting from equation (B7), derived in appendix B,
instead of equation (9).

Trajectory

The solution of the equation of motion for satellite entries is
complicated by the nonlinearity of equation (3). As a first approximation
let us consider equilibrium gliding flight in which the 1ift plus centrif-
ugal force balances the weight. Under these conditions equation (3)

reduces to the algebraic equation relating flight altitude to flight
velocity,

-eZ-l (17)

Equation (17) is a very tractable equation and its application to
the study of the gross motions of 1lifting satellites is shown in figure 1.

L
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Here equilibrium glide is shown in comparison to a high-speed digital
machine computation of equation (3) for an example L/D of 0.5. Note
that the numerical solution to equation (3) skips around the equilibrium-
glide trajectory, but as far as the gross motion of the vehicle is con=-
cerned, the equilibrium-glide trajectory is adequate for the purposes of
this paper.

Under the nonlifting condition (i.e., K = 0), equation (3) becomes

Eggers (ref. 2) has shown that a sufficiently accurate solution for this
case is the following:

f=-%z<1-gz> (18)

where

1
k =
BrfE”

and should be of the order of 1 or less. For the planet Earth, this
condition means ©Og mist be of the order of 2° or more.

The solution of the equation of motion for large-angle ballistic
entries is comparatively simple. Under the boundary condition that at
f=0(i.e., y>w), z = 2zp, equation (8) integrates to give

£ = - \Bro sin 6(zg-2) (19)

We have thus determined trajectory relationships for each of the
three types of atmosphere entries under consideration.

Heating History

We are now in a position to determine the operating conditions for
these trajectories. For the case of the equilibrium~glide trajectory the



dimensionless heating-rate history can be determined from equations (11),

(15): <l6>: and (17):

g, = 2.598e(3/2)z(e"z- 1)*'# T
. ) (20)
- z
% = ZEZS;JJEE In [-9.90 tanh <ﬁ>ﬂ
J
where
(toe = —==2.950  (lifting satellite time constant) (202)

JBg

The maximum heating rate for this case is determined from equations (10),
(11), and (17) as the following:

C’
23 Vis
* = S22
(ag*)y = =3 =YE (21)
where
2
3

In a similar way, the heating-rate history may be determined for
the nonlifting satellite trajectory from equations (11), (15), (16), and
(18). The maximum heating rate is determined from equations (10), (11),
and (18). As an example k will be assumed as unity (see eq. (18)).
For this case, the heating-rate history and maximum heating rate are:

X
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3, = 2.630e (3/2)z <}___ z)
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R[Sy 5 LG ) j
where
(to) g = %}%é@ (nonlifting satellite time constant)
and
(gg*) s = 0-3805Cns
where

z¥ = -0.389

(22)

(22a)

(23)

The large-angle ballistic heating-rate history and maximum heating

rate are determined in a similar way using equation (19) for the trajectory

function. The results are as follows:

12 (2/2)[(1/3)-(z-2)]

qs = [3(ZE_ )]
_ N >
t = ! .
(to), BVgsin eE'{ 2Bl - & v

where

e - @]}

> (24)
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(tO)b = Wooin s (ballistic time constant) (2ka)
E E

1/2 , Vo \3
1/2
(qs*)b = §l€> ( NBrg sin GE)b Cl; <V E > (25)

sat/y
where

z¥-zp = - %

The heating-rate histories for these three cases are shown in
figure 2. Notice all the curves are forced through the two matching
points (A) and (B), and when they are plotted in this form, all have
essentially the same heating history up to and slightly beyond the maximum
heating point. Therefore an approximate generalized heating history for
these three trajectories can be represented by any one of equations (20),
(22), or (24).

Atmosphere Entry Simulator

The preceding is an analysis of the motion and heating of satellite
and ballistic entries into the earth's atmosphere. In reference 1, it
is shown that a ballistic entry can be simulated on the ground in a device
called an atmosphere-entry simulator. Later in this paper, the possibility
of using the atmosphere-entry simulator to simulate not only ballistic
entries, but lifting and nonlifting satellite entries, parabolic entries,
and hyperbolic entries will be considered.

The atmosphere-entry simulator is described in detail in reference 1.
It consists of a contoured supersonic nozzle which gives an exponential
density distribution (i.e., p = poe“By) into which a model is fired
upstream. The model is a ballistic configuration and flies down the center
line of the nozzle. The air-stream velocity is assumed to be negligible

in comparison to the model flight speed. The equation of motion is then
given by:

fa RN 00 B
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This differential equation is the same as equation (7) with sin 6m = 1.
The values of B and y will be grossly different from those that exist
in the earth'’s atmosphere, but atl simulated trajectory points, the
product By will be the same for model and full-scale vehicle. This
allows simulation of ballistic entries for a fixed altitude range and a
wide range of entrance angles.

The heating-rate history equations (24) derived for the ballistic
entry will now also hold for the simulator model with the exception that
B sin 6 is different.

When the simulation of an atmosphere entry is considered from a
parsbolic or hyperbolic trajectory (Vg 2 36,000 ft/sec), it is found that
in order to duplicate the entrance velocity (hence enthalpy) in an
atmosphere-entry simulator, it is convenient to use a high-stream velocity
in conjunction with a high launching velocity of the model to give a
relative velocity of the required megnitude. An analysis of the motion
and heating of a model in this type of simulator is given in appendix C.

SIMULATION

We have now determined the operating conditions experienced by
vehicles or models entering the earth's atmosphere along different tra-
Jectories. We have also examined the conditions that a model fired in
an atmosphere-entry simulator will experience. In this section, we shall
proceed to examine these conditions to establish whether simulation of
heating effects is possible by testing small-scale models.

Before we look into the problem of the simulation of heating effects
on vehicles entering the earth's atmosphere, let us first consider some
of the types of heat shielding designs and the possible critical design
considerations of each.

There are primerily three types of heat shielding designs now being
considered: (1) the heat-sink design, (2) the radiation-shield design,
and (3) the ablation-cooled design. Although combinations of these types
may be desirable in certain cases, this paper will be concerned with the
similation of heating effects for the three separate types only.

When simulation is considered, the obvious question is what parameter
should be simulated. Generally, it is not possible to simulate entirely
a given system with a single small-scale test. It is therefore necessary
to make some evaluation of what is the most important parameter in a given
system which should be duplicated, and to scale the model and environment
accordingly. For example, in a heat-sink design, thermal stress may be
considered as a major design parameter, while in a radiation-shield design,
with a thin nonload-carrying structure, thermal stress may be replaced
by actual surface temperature as a major design parameter. In an
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ablation-cooled design, the effectiveness of the ablating material in
protecting a vehicle from severe heating rates may be of prime importance.
With these thoughts in mind, we shall now focus our attention on each of
these designs separately to determine whether the suggested parameters
can be simulated. If other parameters are considered more important, a
method similar to that presented in this paper may be used to derive the
similarity relations necessary for simulation.

Heat Sink

Ballistic vehicles.- The simulation of thermal stress in the heat-sink

material of ballistic vehicles has been examined thoroughly by Eggers in
reference 1.

Lifting satellite.- The general conditions to be matched for
simulation of thermal stress in the heat-sink msterial between model and
full-scale vehicle are (from ref. 1):

9.-0)

U = 5 % (27)

and

Rep = Rep

where the subscripts m and £ indicate model and full scale, respectively;
A 1is the model to vehicle scale factor; Q/m is the total heat absorbed
per unit mass of heat-sink material; and Re is the Reynolds number. If
we restrict ourselves to using the same material in the model heat sink

as in the full-scale vehicle heat sink, equation (26) along with equa-
tion (27) reduces to the following time condition:

tp = Nte (28)

In general, it is not possible to satisfy both equations (27) and
(28) simltaneously throughout the entry trajectory without altering one
or more of the basic vehicle parameters in the model. In order to derive

wnw
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similarity relations by which we may design models that will simulate
thermal stress, we shall use the following procedure. In figure 2, equa-
tion (28) will be matched at point (A) and equation (27) will be matched
at point (B) of the generalized heating history. Equations (27) and (28)
then take on the following form:

* 1 *

o =y Yse (29)

s}
()
Il

rt.
o
|

o= xztof (30)

The matching of heating-rate histories according to equations (29) and (30)
completely determines the vehicle parameters of the model. 1In general,
then, it is not possible to mabtch the Reynolds number condition, but
relaxing this condition slightly should not affect simulation so long as
laminar flow exists at the stagnation region.

Consider first the low L/D glider utilizing a heat-sink design.
By means of equations (10a) and (21) the maximum heating rate is obtained
as:

2~/ CVsat
*
and equations (6) and (20a) yield the lifting satellite time constant as:

(to) 15 = 2950< f) (32)

It can be seen from equation (31) that the only vehicle parameter that
may be varied in the small-scale model in order to obtain the higher
heating rates dictated by equation (29) is m/Ac. This parameter is
independent of scale factor but may be varied by changing the over-all
density of the model. However, examination of equation (32) shows that
the time condition (eq. (30)) can not be satisfied in any way. Thus we
conclude that simulation of thermal-stress effects in 1lifting satellite
vehicles is not possible by simple scale-model tests.

Since it has been shown that the heating-rate histories are
gpproximately the same for different vehicles when the histories are
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matched at the two aforementioned points, it may be possible to derive
similarity relations between a lifting vehicle and a ballistic model.
It would then be possible to simulate thermal-stress effects in 1lifting
vehicles by use of an equivalent ballistic model.

Since most of the heating experienced by a lifting vehicle occurs
on the high pressure region of the lower surface, an equivalent ballistic
configuration could be designed by replacing the upper (low pressure) .
surface with a mirror image of the lower surface, thus forming a symmet-
rical body. Sketch (c) shows a lifting vehicle configuration and the
symmetrical ballistic model of this configuration.

e )
AN

Lifting configuration Symmetrical configuration
Sketch (c)

Matching the maximum heating rate of the small-scale ballistic
configuration to the maximum heating rate of the glider according to
equation (29) (squared for convenience) yields

<éBVE65in 9E> _ 18 . <évgat > (33)
CpAo b A9 \roCiAc

Matching the time condition according to equation (30) yields

3.116 2 <} ro §>
= N\"2.950 ( = S 4
(BVgsin 6g), P20\2 Toar D Is (34)

Equations (33) and (34%) relate the vehicle and trajectory parameters of
a small-scale ballistic model to those of a full-scale glider, each
suffering approximately the same thermal stress during entry.

Since the ballistic model has two surfaces representing the lower
surface of the lifting vehicle, we may write the following relations:
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oy = 2nx3st
(Cph)y, = 2A%(cph) (35)
oy = Aoy J

where 1 is the ratio of over-all model density to over-all vehicle
density. Substituting equations (35) into equation (33) and solving
equations (33) and (34) for the required density scale factor for
simulation yields:

2.950 (4/9)e
= (36)
3.116 (VEb/Vsat)s

‘The required model scale for the ballistic model can be found from

equation (34).

(37)

> 3.116 [ 2(Vsat/VEb) ]

x =
2.950 By, sin QEbro(L/D)

The curve designated "Lifting satellite" in figure 3 shows the
density scale factor 17 as a function of the ballistic entrance velocity.
From equation (36) note that the density scale factor for simulation is
independent of the size scale factor. The curve designated "Nonlifting
satellite” will be discussed later.

Figure 4 is a plot of equation (37) showing the scale factor A as
a function of the ballistic entrance velocity for a glide vehicle with
L/D = 1.0. Various values of the parameter PBysin eEb are shown. These

values range from that for the Ames Atmosphere-Entry Simulator (0.15 £t71)
to a typical value for atmosphere testing (L.5x1075 ££71).

We have now enough information about the scale factor and over-all
weight to design ballistic models which may be boosted and made to
re-enter the earth's atmosphere, or may be fired in an atmosphere-entry
similator. The thermal stress in the heat shield of these ballistic
models will duplicate that of a lifting-satellite heat shield within the
limits of the approximations and assumptions made.
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Nonlifting satellite.- Consider now a nonlifting-type satellite
utilizing a heat sink. The necessary conditions for simulation are again
given by equations (29) and (30).

From equations (10a) and (23) the maximum heating rate is obtained

B 1/2
(a.*),. = 0.3805CVagat 4/ﬁ< = > (38)
s ‘ns 5a ro \CpAo as

and from equation (22a) the time constant is obtained as:

as.:

3.210

(tO)ns = (39)

It can be seen from equations (38) and (39) that a change in the density
of the model will not satisfy both equations (29) and (30). Therefore

a small-scale model flying a nonlifting satellite trajectory can not be
made to satisfy the conditions of simulation.

As before, let us now consider designing a ballistic model which
will simulate the thermal stress effects on a nonlifting satellite.
Matching the maximum heating rates as before, we obtain

<%BVESSin 9?> _0.43ke <§vgat43/ro (40)
Cpho b A2 CpAo ns
Matching the time condition according to equation (30) yields
.116 .210
> - 2 22 (51)

(BVESin QE)b ( Jan/rO Vsat)ns

Since the ballistic model and nonlifting satellite are similar in every
respect except in over-all density (however, heat-sink materials must
remain the same), we may write:
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oy = ﬂx3mns
(cp)y = A2(cpA),, b (12)
Oy = Aops

where 1 1is the ratio of over-all model density to over-all vehicle
density. Substituting equations (L42) into equation (40) and solving
equations (40) and (L41) for the required density ratio for simulation
yields

_3.210  0.43ke

= (43)
3.116 (VEb/Vsat)S

The required scale factor for the ballistic model is determined from

equation (41).
22 - 3.116 Vgat ~Jan/r0 (Lk)
3.210 VEb Bysin OF,

The scale factor is thus seen to depend on the entrance velocity.

The curve designated "Nonlifting satellite" in figure 3 is a plot
of equation (43) showing the density scale factor 1 as a function of
the ballistic entrance velocity. Note this curve is very similar to
equation (36) for lifting satellites.

Figure 5 shows the scale factor A as a function of ballistic
entrance velocity. The various values of the parameter Bbsin eEb range

again from the value for the Ames Atmosphere-Entry Simulator (0.15 ft'l)
to a typical value for atmosphere testing (L4.5x1075 £t71).

Equations (43) and (44) now give us sufficient information so that
ballistic models may be designed which may be used in either an atmosphere
test or an entry simulator test to simulate thermal stress effects in the
heat sinks of nonlifting satellites.
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Radiation Shield

Generally, the application of the radiation-shield design 1s most
suitable for lifting vehicles because of the rather high peak radiastion-
equilibrium temperatures which would be experienced along other trajec-
tories. For this reason we shall consider only similation conditions for
lifting satellites.

Because of the nature of the radiation-shield structure (i.e., thin
nonload carrying) thermal stress may not be of critical importance. A

more probable choice of the critical design parameter may be the radiation-

equilibrium temperature of the surface. If this is the case, the surface-
temperature history must be duplicated as closely as possible.

Assuming that after equilibrium is reached, all the heat transferred
to the vehicle is radiated away, the conditions for simulation of surface

temperature are then:
q q
<}£> = <}£> (45)
m f

te (L6)

i

L0

where ¢ 1is the surface emissivity.

Again the conditions of simulation will be matched at two points on
the heating-rate history. Equation (46) will be matched at point (A) and
equation (45) will be matched at point (B) in figure 2. Taus the
conditions for simulation become:

0,
(o) = (%0), (1)

From equations (31) and (32) it can be seen that if the model is exactly
similar to the full-scale vehicle and has the same material in the
radiation shield (i.e., ey = €p), then equations (47) and (48) are
automatically satisfied and simulation is possible at any scale.

whHpw
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Let us now inquire as to the possibility of designing a ballistic
model to simulate radiation-equilibrium temperatures of the glider.
Equations (25) and (31) may be used to write equation (47) as:

VpCsin 6 e
mP E251n %> _8 . zvsat :> . (49)
€=CpAc b 9 €e=roCrAc 1s
and from equations (24a) and (32), equation (48) becomes
<}_§;EEEL_> = 2.950 <% o ;) (50)
BVgsin 05/, 2 Tsat D/,

Solving equation (50) for the ballistic entrance velocity yields

Eb 5 3.116 [ > ]
Vgat 2.950 Bypsin 6gro(L/D)

For typical values of the parameter pysin 6y for both atmosphere-entry
similators and the earth's atmosphere we obtain required ballistic entrance
velocities which are much too small to be practical. Thus similation of
lifting satellite radiation-equilibrium tempersatures by ballistic models

is not practical.

Ablation

An important quantity to be simulated in an ablation-cooled design
is the effectiveness of the ablating material. That is, the amount of
heat blockage per unit weight of ablating material. In order that this
effectiveness may be duplicated, the mechanism of the type of ablation
should be preserved in the scaling process.

Let us consider some simple special cases of ablation to get some
general ideas about the mechanism and parameters involved in ablation.
We will first assume that the surface has reached a steady-state condition.
Radiation effects and effects from chemical reactions will be neglected.
This is indeed a simplified model, but it will give us some insight as to
the problems that face us.
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A heat balance at the surface ylelds:

q = 'AL [ep(Ty, - To) +Lgl + % ep (Tv = Tr) + n;_v [Ty +cp (T-Ty)] (51)

where ¢ 1s the heating-rate input and the first term is the heat required
to bring the ablating material from some initial temperature T, to the
fusion temperature Ty, and convert it to the liquid state. The second
term is the heat required to bring the liquid from the fusion temperature
to the vaporization temperature Ty. The last term represents the heat
required to vaporize part or all of the liquid and to bring the vapor in
the boundary layer to some mean boundary-layer temperature, T. The terms
Ly and Iy are the latent heats of fusion and vaporization, respectively.
Since this 1s a steady-state process, the total mass rate of ablation

mist be equal to the mass rate converted to liquid,

ﬁlL=m

It is possible to define an effective heat of ablation for each
material as the ratio of the heating rate to a nonablating surface to the
mass rate of ablation per unit area, or

* dg dg a
-2 - % (52)
(/a) % (d/A)

This parameter is the critical quantity which must be simulated.

No vaporization.- Let us now
consider a speclal case of ablation
where only the ligquid phase is formed.
Sketch (d) shows a model of the
boundary layer for this case. For
the case of no vaporization, equa~-
tion (52) may be written as the
following:

S Air

T, 2
T & Liquid film _  q Ty-T
L\ 7777777 77777777 =g |cep(TLTo) + e+ ep (=5

Sketch (4d) (53)

Note that a linear temperature profile
is assumed in the liquid film.

o W =
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The basic assumptions which will be made in the analysis of this
model will be that ©0; << 8 and that uj; << u. With these assumptions
it can be shown that qs/q ~ 1. Equation (53) can now be written as

4
~  °py
Q* =C + '—2—- ATl

where

Q|
[

= cp(T,-To) + Le

ATl = Tl'TL

Let us now see 1f simulation of this type of ablation is possible
in an atmosphere-entry simulator. The model shall be constructed of the
same material and shall have the same initial temperature as the full-
scale vehicle. Under these conditions, we may write:

Qm* B C+ (cPL/2> ATlm

Qf* i C+ (ch/2>ATlf

(5k)

The conditions which exist in an atmosphere-entry simulator are as
follows:

up = Up (55)

Rem = Re:f»

¥ Applying Reynold's analogy to the air side of the liquid-air interface
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where c¢f 1s the skin-friction coefficient, and from the conditions
given by equation (55) we obtain:

Cfm = Cff

It follows that the shear stress at the interface

1
Tlm X Tlf
or
w) 1 (w
"I <51>m T Ie 51>f
H o

Smo_1 be (56)
ulf 7\ HLIH Slf

Under the assumption of a very thin liquid film we may write the thin
film conduction relation

where k is the mean conductivity of the liquid film. It follows then,
for constant k, that

O1p _ Kk ATy ap N AT

== (57)
Sip  kar. 4m ATy

Consider now the mass rate of ablation. By continuity it must be
equal to the mass which runs off the rear of the vehicle. Therefore we
may write the following relation:

(a/8), _ [op8a(ua/2)Pl, ap
(n/A)e  [prB1(ui/2)Ply Am

(58)
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where P may be thought of as a mean perimeter of the vehicle. Using
equations (56) and (57), we may write equation (58) as:

. 2
(m/A)m N “If ATlm
- ~ b, \AT (59)
(/A)g  Flp \PF1r
From the definition of Q¥*, we obtain
* b AT 2
U _ G (/) =;“1m< s (60)
Q,f* Qe (Ih/A)m A “Lf ATy
Recall, however, from equation (54) that
Qf C+ (epp/2)AT
x =
Q" C+ (ep /2)ATy,
It then follows that
— CP ATlm 1 ¢ L ATlfz
<c + TATlm> o, = X(C + > ATlf> m (61)

For most liquids is a monotonically decreasing function of temperature;
therefore it can be seen from equation (61) that for A < l,‘AT;m:> AT¥f.

This, however, means, unfortunately, (from eq. (54)) that Q*/Qe* > 1,
or that not only is exact simulation not probable, but that the degree
of simulation is unconservative in the sense that measured mass loss per
unit area of the model is smaller than the full-scale value.

It is now proper to inguire how unconservative we are. This question
presupposes some knowledge of material properties. Unfortunately, knowl-
edge of the physical properties of many of the ablating materials is
indeed lacking. However, a calculation of the effective heat of ablation
for a particular material, for which the necessary properties are known,
may indicate the order of magnitude of the error in simulation.

Pyrex glass (Corning 7740 glass) was chosen because of the
availability of data on its high-temperature properties. The following
expression for the viscosity fits the published data quite well (ref. 7).
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The melting point was taken as TL = 3OOOo R. The specific heat of the
liquid was taken as 0.33 Btu/lb OR, and the constant C as 750 Btu/lb.
Figure 6 shows, from the solution of equation (61), the liquid film
temperature potential of the model versus the temperature potential of
the full-scale vehicle for various values of the scale factor. This graph
shows that the interfacial temperature difference for the model, Amlm,
can become very mach larger than the corresponding difference for the
full-scale vehicle, AIif, and hence from equation (57) the inability of
properly scaling or compressing the liquid film on the small-scale
vehicle. Equations (60) and (62) along with the results shown in fig-
ure 6 have been used to calculate the ratio of the effective heat of
ablation measured for the model to that of the full-scale vehicle. The
results of this calculation are shown in figure 7. Examination of fig-
ure T shows that 1f the interface temperature T, of the full-scale
vehicle, is not too much higher than the melting temperature Ty (say
less than 1000° R), the measured Q* in an atmosphere-entry simulator
with a scale factor of say 1/80 is less than 16 percent too high. It
also shows that for the same conditions, a larger scale (say A = 1/10)
rocket-launched test vehicle would simulate full-scale effective heats
of ablation to within 10 percent.

It should be noted that this analysis was for ablation in which the
liquid phase is present on both the model and the full-scale vehicles.
We have shown that the interface temperature of the model can be much
higher than that of the full-scale vehicle, so it is possible that although
the ablation on the full-scale vehicle consists of only melting, due to
the high interface temperature of the model, the ablation on the model
may be of the mixed form consisting of both gas and liquid. The
applicability of this analysis would then be in question.

Strong vaporization.- Consideration has been given to the case of
ablation where only the liquid phase is present. Now consider the other
limiting case where all the melt is transformed into vapor or gaseous
phase in the boundary layer.

Bethe and Adams (ref. 8) have treated the case of ablation with
vaporization and have derived, for the case of a high-viscosity liquid
with strong vaporization, the following relation:

Q¥ = hy+ hyp+ 0.68M° 2%

where hy 1is the latent heat of vaporization, hp is the heat capacity
of the vapor, M 1is the ratio of molecular weights of air to the vapor,
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and hg 1s the stagnation enthalpy. It can be seen from this equation
that Q* is essentially a function of only the material and the stagna-
tion enthalpy. Therefore 1f flight velocities are matched, as they are
in an atmosphere-entry simulator, it can be expected that measured effec-
tive heats of ablation will be the same as will occur on a full-scale
vehicle.

Since it has been shown that the effective heat of ablation can be
simulated (or at least approximately so) in an atmosphere-entry simulator
under the same conditions as were used to simulate thermal stress in
ballistic vehicles, the similarity relations for 1lifting and nonlifting
satellites will apply exactly. However, the additional restriction must
be imposed that the entrance velocity (hence enthalpy) be the same as
that of the full-scale vehicle. This condition restricts the choice of
medel density scale factor and model scale factor. For models boosted
in the earth's atmosphere, some latitude remains in the choice of scale
Tactor by changing the ballistic entrance angle.

Summary of Similarity Relations

In summary, the following table shows, for the types of entries
considered, what can be simulated by the technigues discussed in this
paper, and which equations govern the choice of model size and weight.

Simulation with -
Type of Type of -
entry shield Boosted |Simulator A 1
models | models
Lifting Heat sink Yes Yes Eq. (37) | Eq. (36)
Radiation Yes No Any scale n=1
Ablation Yes Yes Eq. (37) | Eq. (36)
Nonlifting | Heat sink Yes Yes Eq. (44) | Eq. (43)
Ablation Yes Yes Eq. (4k) | Eq. (43)

ITIUSTRATIVE EXAMPIE

In order to illustrate the aforementioned methods of simulation
with small-scale models, an example has been worked out below for the
case of a simple spherically blunted half-cone configuration. The problem
is to use the similarity relations to design small-scale models which
can be used to simulate the heating effects due to the atmosphere entry
of this vehicle.
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The example vehicle is a high-1ift, high-drag gliding configuration
utilizing a heat-sink design. Figure 8 shows the assumed full-scale
dimensions of such a vehicle. Newtonian impact theory gives a lift-drag
ratio of 0.87 at an angle of attack of 0°. The 1lift coefficient referenced
to base area is 0.58. For the purposes of this discussion it will be
assumed that the vehicle enters the atmosphere along an equilibrium-glide
trajectory trimmed at zero angle of attack. The following table gives
the assumed parameters of this vehicle.

Area of the base 39.3 sq 1t
Plan area k2.9 sq ft
Forward surface area 118.3 sq ft
Volume 111.2 cu ft
Heat-sink weight 1250 1b
Interior capsule weight 2750 1b
Total vehicle weight L4000 1b

It has been shown that simulation of heat-sink thermal stress for
this type of vehicle is not possible with a small-scale model of the
vehicle. However, simulation is possible by the use of a symmetrical
ballistic model (shown in fig. 8) and a proper ballistic trajectory. The
problem is to design the model and the trajectory which it follows. We
will design two models for this test: (1) a model for testing in the
earth's atmosphere, and (2) a model for testing in an atmosphere-entry
similator with B sin 6 = 0.15 ft7*. In both cases the entrance velocity
of the ballistic model will be 18,000 feet per second.

The proper scale factor to be used is determined from equation (37).
To test a model of this configuration in the earth's atmosphere
(B = 1/22,000 ft'l) assuming an entrance angle of 30° we obtain the
required scale factor of A = 1/11.7. The scale factor to be used in an
atmosphere-entry simulator where B sin 6y = 0.15 £ft7t is A = 1/952.

In order to obtain the higher heating rates and shorter times of
flight necessary for simulation, we have seen that the over-all density
of the model must be increased over that of the full-scale vehicle.
Referring to figure 3 or equation (36), we obtain a required model to
full-scale density ratio of 7.2. The full-scale over-all density is
36 lb/fts, therefore the model must have an over-all density of 259 lb/ft3
However, one must retain the same material in the heat sink.

All the necessary parameters have now been determined. In conclusion
the following table lists these design parameters for the full-scale
vehicle and the two models.

nNY Y e
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Full scale AtnwsiEEZi test Simalator test mode%
(p=1/22,000 ££°1) (B sin 6g=0.15 £t7%)
f
Configuration Blu22n2al Blunted full cone Blunted full cone
6
Entrance velocity §t7§22 18,000 ft/sec 18,000 ft/sec
Ballistic entrance o o° ' o
angle 3
Base diameter 10 ft 10.25 in. 0.125 in.
Over-all density [36 1b/ft3 259 1b/ft3 259 1b/ft3

CONCLUDING REMARKS

It has been found through a motion and heating analysis of various
satellite entries (i.e., lifting and nonlifting) that if the heating
histories of these vehicles are made dimensionless properly, the heating-
rate histories may be represented approximately by the curve for ballistic
entries. In this way it was found that one may relate the heating effects
on one type of vehicle to those occurring on another and, hence, simulate
these effects on a model flying a different type of trajectory.

In particular, it was determined that simulation of thermal stress
effects occurring in lifting and nonlifting satellites utilizing a heat-
sink design was impossible by simple small-scale tests along similar
trajectories. However, it was also shown that simulation of thermal
stress effects in 1lifting and nonlifting satellites is possible by properly
designing equivalent ballistic models and testing them along ballistic
trajectories. For the case of a lifting satellite, the ballistic model
is designed by placing a mirror image of the lower surface of the lifting
configuration on top. The concept of altering heating rates and flight
times by increasing the over-all density of the model was introduced and
similarity relations governing the design of the model were derived.

It has also been shown analytically that it is possible to use an
atmosphere-entry simulator designed primarily for the testing of ballistic
configurations to test 1lifting and nonlifting satellite configurations.

Simulation of heating effects on radiation-shield design was also
investigated. It was determined that simulation of radiation-equilibrium
surface temperatures is possible by a simple scale-model test. Ballistic
configurations could not be used because the required entrance velocity
of the ballistic model would be too low.
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Analysis of two limiting cases of ablation shows that simulation of
the effective heats of ablation in an atmosphere-entry simulator is
slightly unconservative for the case of liguid ablation and is, within
the limits of the assumptions made, nearly exact for the case of ablation
with strong vaporization. The conditions of simulation are the same as
those for thermal stress simulation.

Ames Research Center ]
National Aeronautics and Space Administration
Moffett Field, Calif., Nov. 30, 1959
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APPENDIX A
NOTATTION

area, sq ft

empirical constant (see eq. (B7))

empirical constant, 1.54X107° slugsl/2/ft
vehicle constant (see eq. (10a))

constants

drag coefficient

1ift coefficient

coefficient of friction

specific heat at constant pressure

drag force, 1b

transformed altitude coordinate (see eq. (L))
acceleration of gravity, ft/sec?

enthalpy

heat-transfer coefficient, Btu/ft2 sec °R
1ifting satellite parameter (see eq. (6))
nonlifting satellite parameter (see eq. (18))
mean conductivity of liquid film, Btu/sec ft °R
1ift force, 1b

mass of vehicle, slugs

mass rate of ablation, slugs/sec

Nusselt number

Prandtl number

total heat absorbed, Btu

29
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effective heat of ablation, Btu/lb

heating rate, Btu/sec f£t2

dimensionless heating rate

local radius of curvature of flight path

radius of the earth, ft

temperature, °R

time, sec

dimensionless time

trajectory time constant, sec

vehicle velocity, ft/sec

velocity of ballistic vehicle at edge of atmosphere, ft/sec
satellite speed, ft/sec

altitude, ft

transformed velocity coordinate (see eq. (5))

constant, £t~1 (1/22,000 £t~1 for the earth's atmosphere)
boundary-layer thickness, ft

surface emissivity

model to vehicle density ratio (density scale factor)
angle of flight path to horizontal, radians

entrance angle of ballistic vehicle, radians

model to vehicle scale factor

viscosity, slugs ftg/sec

atmospheric density, slugs/ft3

reference density (0.0017 slugs/ft> for the earth's atmosphere)
nose radius, ft

range angle, radians
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Subscripts

liquid-air interface (ablation with no vaporization)
ballistic vehicle

full scale

liquid

lifting satellite vehicle

model.

nonlifting satellite vehicle

stagnation

vapor
Superscript

point of maximum stagnation-point heating rate

31
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APPENDIX B

TURBULENT HEATING RATES

The heating rate 1s, in general,

q = h(Ty - Ty) (B1)

where

h heat-transfer coefficient
T, recovery temperature

Ty  wall temperature

or in terms of the Nusselt number (neglecting the wall temperature)

Tp (B2)

where

d characteristic dimension

k alr conductivity

The recovery temperature is approximately (again neglecting the wall
temperature) given by

Ty ~ 55— (B3)

Substituting equation (B3) into equation (B2) and introducing the Prandtl
number results in:

_ Nu prVg

T2 Pr a (B4)

The viscosity at recovery temperature can be approximated by
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by = CTpt’2 (B5)

and the Nusselt number is given empirically by
Mo = Op(Pr)°(Reg)” . (B6)

where Cs,s,p are empirical constants. Therefore, if we substitute
equations (B3), (B5), and (B6) into equation (B4) and assume a Prandtl
number of unity we obtain the heating rate in the following form:

q = BV <§>p (87)

where B 1s a constant. Typical values for p for laminar and turbulent
flow are 0.5 and 0.8, respectively.
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APPENDIX C

SIMULATTION OF HIGHLY ELLIPTIC, PARABOLIC, AND
HYPERBOLIC ENTRIES
Vehicle Motion and Heating

It can be shown from reference 2 that the trajectory equation for
atmosphere grazes from supercircular orbits takes the form

f = bF(z) (c1)

where b

is a vehicle parameter (i.e., function of L/D, type of entry,
etc.).

The same arguments advanced for satellite heating-rate histories

(see "Heating Analysis") can be used to write the maximum heating rate
and vehicle timé constant as:

3 /B
Cvsat 4 E—O— <CDIZ

3 IB m
CVSS.t 4 r_O- <CDA

i/2
5) %) (ce)

*

Ag

1/2
*(1/2 3/2)z%
0> LL/2p ( )e( )

1 0 4
A [ _a
JBg b Jzx  F(z)e?’/2

Il

_—-0 (c3)
JBg b

where 2z¥ 1is determined from

*
ar * _
(2 2 o
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and Zo 1s such that

on the high velocity side of maximum heating.
Model Motion and Heating

We have seen that simulation of heating effects on ablation-cooled
vehicles is obtained if the stagnation enthalpies of the trajectory are
duplicated. A convenient method of obtaining these high enthalpies in
an atmosphere-entry simulator is to couple a high model launching velocity
with a high stream velocity in the simulstor nozzle. The high stream
velocity in the simulator nozzle (of the order of 16,000 ft/sec) can be
obtained by using a shock-heated high-pressure air supply.

The motion equation of a model fired upstream into a supersonic
similator nozzle in a stationary coordinate system along the nozzle center
line is then

Cph

av _
m

av
T =" (ch)

<] 2. . av
2(V+Vs) = T

where

-By
P = Pt

and Vg 1is the stream velocity. Using the coordinate transforms defined
by equations (4) and (5) and defining a new coordinate { such that
§ = z2gp-~-2z, yields

SR

.o
) Cl+ﬂe§/2)2 e

vhere 9§ = Vs/VE and where the subscript E refers to the model entrance
conditions.

To obtain some gross ideas about the simulation of supercircular
entries in such a device and to obtain convenient closed expressions for
the solution of equation (C5), the stream velocity will be assumed constant
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along the nozzle. As a matter of fact, because of the decrease in static
temperature down the nozzle, the stream velocity does remain essentially
constant even though the Mach number increases. Integrating equation (C5),
using the boundary condition £ =0 at { =0 (z = ZE), yields:

¢/
JPTo <§ -2In l+16fs S - -2 > (c6)

1+3
l+—ﬂe§/2

The heating rate to the model is given by equation (9) altered to
include the relative velocity.

= ¢ jg(v+vs)8 (c7)

Written in the f - { coordinates, equation (CT7) becomes

3

q, = gnet/z7(9/2)¢ l+«8e€/2> (c8)

where

B /2
3 m
=OE 45 <CDA0> (c9)

Differentiating equation (C8) to determine the f and { coordinates
of the maximum heating rate yields:

< 377 =0 (c10)

*
14 eb Leseb /2

Using equations (C5), (¢6), (C8), and (Cl0) we obtain the maximum heating
rate as:

3 l/2 *x 5/2
qg* b \[Eg/CDAG) SN TR YC

JF (m/cpho)™’®

- & P(s,t%) (c11)

5
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Integrating equation (Ch) for the time of flight with the boundary
condition that t =0 at € = t* yields:

6o L Jfg eg/zdé
PVe Je* /¢ ¢/2\
<\/Br><l+ae >
(0]

The vehicle time constant can then be written as:

to =

A/ o e
e e <——f ><l+19e€/2>2
'JBI'O

_ 1o
= BV (c12)

where Co is such that

S
9y & %
where qg occurs at t = -tg on the high velocity side of maximum
heating. ©
Simulation

Matching the maximum heating rates and time constants according to
the scaling equations (29) and (30) and defining the density scale

factor such that
< nlj) =1 < m )
CDAO' n CDAO' £

yields the following similarity equations:
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211
p- e 1 (c13)

2 I
PT S0 (Vg/Vgat)

B 11, Vp/V
j____: m o E/ sat (Clll-)

AZ mf/ro Io b

It is now only necessary to evaluate the functions P, Q, Iy, and IIg
for the particular entry to be simulated and enough information is obtained
to design the simulator model properly.

Parabolic Grazes

Tet us examine the particular case of entry from a parabolic
trajectory with a subsequent atmospheric skip and energy loss, and exit
at circular speed. Equation (Cl) takes on the form

f = Db(ze-2)z
where
Zg = in 2 (i.e., Ve = «/EVsat)

and b takes on the values (depending on L/D)

L/D b

-0.5  0.334

0 1.10k4
.5 3.936

The functions Q and II, are determined as:

= 0.658

O
!

IIO = 3-287
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Figures 9 and 10 show the model design parameters, 7 (the density
scale factor) and A (the scale factor), versus model entrance velocity
for various stream velocities in a simulator nozzle with *f = 0.60 ft~1.
Figure 11 shows how well the heating-rate and enthalpy histories are
matched if the design conditions are satisfied.

Also shown in figure 11 are the heating-rate and enthalpy histories
for the model resulting from a more refined analysis allowing for the
variation of stream velocity down the nozzle. The motion and heating were
calculated by a step-by-step integration of equation (Chk) with a stream
velocity variation as exists in a nozzle with B = 0.60 £t™*. A value of
(CpA/m)p, = 0.73 £t™* was assumed. Notice that although simulation is
not accurate on the low velocity side of the heating pulse, it is still
possible to match the heating rates and enthalpies adequately up to the
maximum heating point.

1This is the calibrated value for the Ames small-scale Atmosphere-Entry

Simulator.



4o

REFERENCES

Eggers, A. J., Jr.: A Method for Simulating the Atmospheric Entry
of Long~-Range Ballistic Missiles. NACA RM A55I15, 1955.

Eggers, A. J., Jr.: The Possibility of a Safe Landing. Ch. 13 of
Space Technology. John Wiley and Sons, Inc., 1959.

Allen, H. J., and Eggers, A. J., Jr.: A Study of the Motion and
Aerodynamic Heating of Missiles Entering the Earth's Atmosphere at
High Supersonic Spaeds. NACA TN L4OL7, 1957.

Eggers, A. J., Jr., Allen, H. J., and Neice, S. E.: A Comparative
Analysis of the Performance of Long-Range Hypervelocity Vehicles.
NACA TN L4oW6, 1957.

Chapman, D. R.: An Approximate Analytical Method for Studying Entry
Into Planetary Atmospheres. NACA TN 4276, 1958.

Sibulkin, M.: Heat Transfer Near the Forward Stagnation Point of a
Body of Revolution. Jour. Aero. Sci., vol. 19, no. 8, Aug. 1952,
pp. O70-571.

Anon.: Properties of Selected Commercial Glasses. Corning Glass
Works Bulletin B-83, 1949.

Bethe, H. A., and Adams, M. C.: A Theory for the Ablation of Glassy
Materials. Rep. 38, AVCO Res. Lab., Nov. 1958.




6S

w W e

41

[0 F
1.O—

|»_
Ol

Equilibrium glide
—— —— Machine computation
of eq.(3)

001 ' | |

-0l -1 -1.0 -0

Figure 1.- Comparison of equilibrium glide and machine computations.
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Figure 3.- Density scale factor for the simulation of thermal stress in
satellite vehicles.
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Figure 6.~ Model interfacial temperature versus full-scale interfacial
temperature.
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Figure 9.- Density scale factor for the simulation of parabolic grazes
(parabolic-entry simulator).
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O Matching point
—— Model (Vg=constant)
—— Parabolic graze

(lifting and non-
lifting)

——— Model (V; = variable)

] ] ]
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Figure 11.- Model and vehicle heating-rate and enthalpy histories for
the simulation of parabolic grazes (parabolic-entry simulator).
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